Dades bàsiques
Crèdits
60 ECTS
Tipus de curs
Màster
Idioma
Anglès
Dates
2/10/2023 - 31/7/2024
Modalitat
Presencial
Horari
de dilluns a dijous, de 9:00h a 13:00h
Lloc
Barcelona Technology School. C. dels Almogàvers, 119. - 08018 Barcelona
Preu
17.000 €
Matrícula oberta
Presentació
La transformació digital està canviant tots els aspectes de la societat i només té un límit: la imaginació. L'ecosistema digital s'ha convertit en el nou status quo; està canviant indústries, negocis, relacions i, en general, tots els aspectes de les nostres vides. Barcelona Technology School és una institució internacional enfocada al desenvolupament de professionals que transformaran la indústria digital.
El Màster de Formació Permanent en Big Data and Artificial Intelligence Solutions és un programa d'un any acadèmic dirigit a graduats universitaris que volen formar-se en data science i data analytics amb un enfocament en Data-Driven Business per generar innovació a partir d'informació rellevant i proposar solucions estratègiques per a qualsevol tipus d'organització o indústria utilitzant les tecnologies més avançades.
Totes les assignatures es treballen des del context del cicle de vida d'un projecte de big data i estan connectades per ajudar l'alumne a entendre la importància i aplicació pràctica de cadascuna d'elles en qualsevol projecte real. Durant el màster, els alumnes posen en pràctica els coneixements que van adquirint i es preparen per participar en totes les fases d'un projecte de big data: exploration, pre-processing and storage, data visualization i analítics and exploitation.
Barcelona Technology School ha desenvolupat la seva pròpia metodologia basada en el project-based learning, a partir de la qual els alumnes aprenen, mitjançant projectes, de forma pràctica, activa i participativa. Això permet als estudiants de generar i desenvolupar les seves pròpies solucions digitals de forma transversal durant tot el curs. El procés culmina el Demo Day, un esdeveniment obert al públic en què els alumnes presenten la seva idea i mostren la demo a un jurat d'inversors i experts del sector digital.
BTS assegura a tots els participants una experiència professional durant el Màster mitjançant pràctiques en empreses líders del sector digital.
Les destreses que guanyaran els estudiants durant el programa els qualificaran per a un divers rang de rols de treball en la indústria digital i els permetran de desenvolupar coneixements en algunes de les àrees més demandades actualment, com ara Data Science, Data Analysis, Artificial Intelligence, Data Visualization, Infrastructure, Agile, Creative Technology i Entrepreneurship.
Objectius
Desenvolupar els coneixements i les habilitats en dades massives (Big Data) més demandats que permetin descobrir informació de valor i fomentar innovació en empreses o institucions mitjançant l'aplicació de les disciplines i tecnologies més avançades del sector.
Tres raons per escollir-lo
- Experiència professional durant el Màster. BTS et garanteix pràctiques remunerades en companyies líders del sector digital.
- Estudiaràs en un entorn internacional i et formaràs en les tecnologies més demandades actualment.
- Aprèn amb professors professionalment actius, experts del sector digital i mentors internacionals que t'ajudaran a descobrir el teu objectiu professional.
Acreditació acadèmica
Màster de Formació Permanent en Big Data and Artificial Intelligence Solutions per l'Institut de Formació Contínua de la Universitat de Barcelona.
Curs propi dissenyat segons les directrius de l'Espai Europeu d'Educació Superior i equivalent a 60 crèdits ECTS.
Programa
1. Statistical Foundations for Data Science
1.1. Introduction to data
1.2. Probability
1.3. Distributions of random variables
1.4. Foundations for inference
1.5. Inference for numerical data
1.6. Inference for categorical data
1.7. Introduction to linear regression
1.8. Multiple and logistic regression
2. Data Science Foundations
2.1. Practical Data Manipulation
2.2. Basic Data Analysis
2.3. Data Science in Production
3. Creative Technology
3.1. What's Innovation
3.2. Collaborative creativity
3.3. Opportunity recognition
3.4. Learning from innovators
3.5. Design Thinking Fundamentals
3.6. Empathy
3.7. Define
3.8. Ideate
3.9. Prototype & Test
3.10. Frameworks and ecosystems for innovation
4. Data Visualization
4.1. Data Visualization Foundations
4.2. Tableau
4.3. Visualization for the web
5. Classical Data Analysis
5.1. Regression
5.2. Classification
6. Big Data Infrastructure
6.1. Introduction to Big Data
6.2. Introduction to Cloud Infrastructure
6.3. Introduction to Docker and Kubernetes
6.4. Storage
6.5. Big Data Ingestion
6.6. DevOps
6.7. Data Science Life cycle Managment
7. Data-Driven Business
7.1. Data Analytics in Business Real Situations
7.2. Big Data Project Management
7.3. Data Governance
7.4. Self-BI management: empowering the business user
7.5. Evidence based management
7.6. Legal and privacy aspects in data
8. Big Data Security
8.1. Cybersecurity introduction
8.2. Risk Analysis
8.3. Security architecture principles
8.4. Security of networks, systems, applications and data
8.5. Governance and Methodologies
8.6. Standards, Frameworks and Best-practice libraries
8.7. Legal IT.
8.8. Cybersecurity in Big Data projects
8.9. Particularities of Big Data technology
8.10. Different approaches for Big Data projects
9. Advanced Data Analysis
9.1. Basket Analysis
9.2. Time Series Analysis
9.3. Social Network Analysis
9.4. Geospatial Analysis
10. Real-time Data Analysis
10.1. Introduction to real time data systems.
10.2. Parallel programming on large scale data processing.
10.3. Parallel programming using Spark framework.
10.4. Batch processing on Spark.
10.5. 5.Stream processing on spark.
10.6. Machine learning pipelines on spark, MLIB.
10.7. Graphs and graph-parallel computation, GraphX.
11. Agile
11.1. The Agile approach
11.2. Why do we need an Agile approach to Analytics?
11.3. Intro to the Scrum and Kanban framework
11.4. Scrum
11.5. Project inception
11.6. Scrum for Big Data projects
11.7. Scaling Agile: Agile Management in the Enterprise
11.8. Introduction to Lean
11.9. Introduction to OKRs
12. Artificial Intelligence
12.1. Machine Learning
12.2. Neural networks
12.3. Deep Learning
12.4. Applications
13. Entrepreneurship
13.1. Entrepreneurial mindset & introduction to Value proposition
13.2. Introduction to Business model canvas & 9 revenue models
13.3. Market validation & metrics
13.4. Startup ecosystem & stages of Startup life.
13.5. How to pitch & deal with investors.
13.6. Business plan for startups: financial strategy
13.7. Business plan for startups: growth strategies
13.8. Financing options for your startup
14. Final Project
14.1. Executive summary
14.2. Value proposition
14.3. Big Data Solution & Product development
14.4. Business plan: financial and growth strategies
14.5. Product roadmap
Destinataris
Graduats universitaris internacionals, preferentment de graus relacionats amb els àmbits de la tecnologia, la informàtica les ciències o els negocis, que dominin la
llengua anglesa, ja que el màster s'imparteix totalment en anglès.
La Barcelona Technology School considera que la diversitat és un valor fonamental, tant en el sentit de la nacionalitat dels estudiants com en l'equilibri de gènere.
No s'exigeix experiència professional, però es té en compte a l'hora d'analitzar les candidatures.
Professorat
Direcció
Sr. Sergio Gago
Managing Director & CTO @ Moody´s Analytics
Quadre docent
Sr. Víctor Pajuelo
Data Science Foundations
Sr. Oriol Ribera
Creative Technology
Sr. Víctor Pascual
Data Visualization
Sr. Xavier Gumara
Agile
Sr. Xavier Giro
Artificial Intelligence
Sra. Ana Guasch
Entrepreneurship
Sr. Sergio Gago Huerta
Final Project
Sr. Miguel Sanz
Classical Data Analysis
Advanced Data Analysis
Sr. Arthut Prevot
Real-time Data Analysis
Sr. Martí Segarra Casas
Big Data Infraestructure
CONTACTE
Barcelona Technology School
Adreça:
C/ Consell de Cent, 419.
08009. Barcelona.
E-mail: info@barcelonatechnologyschool.com
Web: barcelonatechnologyschool.com